Graphing Simple Quadratic Equations

A quadratic equation is given in the form \(y = ax^2 + bx + c \), where \(a, b, \) and \(c \) are all constants. In this case, we are only going to be working with quadratics equations of the form \(y = ax^2 \). The graph of these types of equations is called a parabola.

1. Open MathGV.exe and pull up a 2-d Cartesian plane.

2. Graph the following parabolas on a single 2-d Cartesian grid. Transfer them to a sheet of graph paper as you graph each one.

 When graphing the following on your paper, use 1, 0, –1 for values of \(x \) and plot each graph in different colors in order to distinguish between graphs.

3. Graph \(y = x^2 \)

4. Graph \(y = 2x^2 \)

5. Graph \(y = 5x^2 \)

6. Graph \(y = \frac{1}{2}x^2 \)

7. Graph \(y = \frac{1}{10}x^2 \)

8. Where would the graph for \(y = 3x^2 \) lie with respect to the other graphs?

9. What would the graph for \(y = \frac{1}{100}x^2 \) look like?

10. As “a” gets closer to 0, what happens to the graph of \(y = ax^2 \)? ______________
 __

11. What happens when \(a = 0 \)? __

12. What do you think happens when “a” becomes a negative number? ______________
 __

13. Describe what you think \(y = -x^2 \) should look like. _________________________
 __
 (Check your answer against the value \(a = -1 \) on MathGV.)
In summary:

a. If $a > 0$, the graph turns _______________. (Upwards or downwards?)

b. If $a = 0$, the graph is a ____________.

c. If $a < 0$, the graph turns ________________. (Upwards or downwards?)

d. The closer “a” is to 0, the ____________ (wider or narrower) the parabola is.

e. The further “a” is away from 0, the ____________ (wider or narrower) the parabola is.