1. The range of a relation tells what values \(Y \) can be.
2. What number can we \textbf{not} divide by? \(0 \)
3. The domain of a relation tells what values \(X \) can be.
4. \(f(x) \) is another name for \(Y \).
5. What numbers can we \textbf{not} take the square root of in the real numbers? \(\text{negatives} \)
6. In a word problem, the “average rate of change” is the same as the \textit{slope} and the starting point is the same as the \textit{y-intercept}.
7. Write “\(f(3) = -7 \)” as an ordered pair. \((3, -7) \)
8. Given \(U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \), \(A = \{1, 3, 4, 6, 8\} \) and \(B = \{1, 4, 7, 9, 10\} \), find the following:
a) Draw the Venn diagram that represents the sets.
b) \(A \cup B \)
c) \(A \cap B \)
\{1, 3, 4, 6, 7, 8, 9, 10\}
\{1, 4\}
9. Given the relation \(\{(2, -1), (-1, 3), (0, -4), (-3, -3)\} \), find the following:
a) Domain: \(\{2, -1, 0, -3\} \)
b) Range: \(\{-1, 3, -4, -3\} \)
c) Maximum of x-values: \(2 \)
d) Minimum of x-values: \(-3 \)
e) Maximum of y-values: \(3 \)
f) Minimum of y-values: \(-4 \)
g) Make a line graph of the relation on the grid to the right.
10. Is the relation \(\{(5.1, -3.8), (2.1, 5), (1, 5), (2.1, 2)\} \) a function? Why or why not? \(\text{No. The x-value 2.1 is mapped to two different y-values (5 and 2).} \)
11. Graph the line given by \(y = \frac{1}{2}x - 2 \).
12. Find the slope of the following lines:
a) \(f(x) = 2x + 8 \) \(m = 2 \)
b) \(y = 3.2 - 8.6x \) \(m = -8.6 \)
c) \(5x + 6y = 18 \) \(m = -\frac{5}{6} \)
d) Passing through \((-1, -3)\) and \((3, 7)\) \(m = \frac{5}{2} \)
13. Find the domains of the functions below:

a) \(f(x) = 3x^2 + 2x - 8 \)
 all real numbers

b) \(f(x) = \sqrt{x - 2} \)
 \(x \geq 2 \)

c) \(f(x) = \frac{3}{x + 1} \)
 all real numbers except -1

14. Find the equation of the line having the following properties:

a) slope of 1.8 and passing through (0, -2.1).
 \(y = 1.8x - 2.1 \)

b) slope of \(-\frac{1}{6}\) and passing through (0, 3).
 \(y = -\frac{1}{6}x + 3 \)

c) slope of 2 and passing through (0, \(-\frac{1}{2}\)).
 \(y = 2x - \frac{1}{2} \)

15. Given the graph of the line below, find the following. (Assume each tick mark is “1”.)

 a. \(\Delta x: +4 \) (or -4)
 b. \(\Delta y: +3 \) (or -3)
 c. The slope of the line \(\frac{3}{4} \)
 d. The y-intercept of the line -4
 e. The equation of the line \(y = \frac{3}{4}x - 4 \)
 f. A point on the line other than the y-intercept. Answers will vary. \((-4, -7), (0, -4), (4, -1), (8, 2)\) are all possibilities.

16. Determine whether the data in the table below represents a linear or a nonlinear function.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-7</td>
</tr>
<tr>
<td>-1</td>
<td>-5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

slopes are different → nonlinear function

17. Find the y-intercepts of the following lines:

a) \(y = -\frac{2}{3}x + 5 \) \((0, 5)\)

b) \(2x - 5y = 15 \) \((0, -3)\)

c) \(4x = 3y + 24 \) \((0, -8)\)

18. Given \(f(x) = -4x - 9 \):

a) Find \(f(2) \)
 \(-17\)

b) Find \(f(-3) \)
 \(3\)

c) Find \(f(0) \)
 \(-9\)

19. Write the following in slope-intercept form.

a) \(3x + 5y = 15 \)
 \(y = -\frac{3}{5}x + 3 \)

b) \(2x - 3y = 6 \)
 \(y = \frac{2}{3}x - 2 \)

c) \(4x - 7y = 28 \)
 \(y = \frac{4}{7}x - 4 \)